
Factor Once: Reusing Cholesky Factorizations on Sub-Meshes

PHILIPP HERHOLZ, TU Berlin, Germany
MARC ALEXA, TU Berlin, Germany

A common operation in geometry processing is solving symmetric and
positive semi-definite systems on a subset of a mesh, with conditions for the
vertices at the boundary of the region. This is commonly done by setting
up the linear system for the sub-mesh, factorizing the system (potentially
applying preordering to improve sparseness of the factors), and then solving
by back-substitution. This approach suffers from a comparably high setup
cost for each local operation. We propose to reuse factorizations defined
on the full mesh to solve linear problems on sub-meshes. We show how
an update on sparse matrices can be performed in a particularly efficient
way to obtain the factorization of the operator on a sun-mesh significantly
outperforming general factor updates and complete refactorization. We
analyze the resulting speedup for a variety of situations and demonstrate
that our method outperforms factorization of a new matrix by a factor of up
to 10 while never being slower in our experiments.

CCS Concepts: • Computing methodologies → Mesh geometry mod-
els; •Mathematics of computing → Computations on matrices; Solvers;

Additional Key Words and Phrases: geometry processing, matrix factoriza-
tions

ACM Reference Format:
Philipp Herholz and Marc Alexa. 2018. Factor Once: Reusing Cholesky Fac-
torizations on Sub-Meshes. ACM Trans. Graph. 37, 6, Article 230 (Novem-
ber 2018), 9 pages. https://doi.org/10.1145/3272127.3275107

1 INTRODUCTION
Many interactive modeling operations require solving a linear sys-
tem on a subset of a mesh. As a guiding example for this type of
operation we take mesh deformation: the user marks a region of
interest and a set of handle vertices; moving the handle vertices will
then affect the vertex positions in the region of interest, while the
vertices outside the region of interest stay fixed. Many approaches
for this operation are based on minimizing a quadratic (or nonlin-
ear) deformation energy subject to position constraints of all fixed
vertices [Bouaziz et al. 2012; Sorkine and Alexa 2007; Sorkine et al.
2004]:

argmin
x∈Rn×3

Tr
(
xTAx

)
s.t. xi = xci for i ∈ B

(1)

Authors’ addresses: Philipp Herholz, philipp.herholz@tu-berlin.de, TU Berlin, Ger-
many; Marc Alexa, marc.alexa@tu-berlin.de, TU Berlin, Electrical Engineering & Com-
puter Science, Marchstr. 23, Sekretariat MAR 6-6, Berlin, 10587, Germany.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
0730-0301/2018/11-ART230
https://doi.org/10.1145/3272127.3275107

Fig. 1. Deforming a mesh based on selecting a region of interest (green)
and a handle (red) commonly requires solving a sparse linear system. This
is typically done using the Cholesky factorization. The computation time
for the factorization depends on the number of vertices in the region of
interest, and may prohibit interactive use for large meshes. We propose
a method that exploits the factorization of the operator L on the whole
mesh for computing the new factorization of L′ on the sub-mesh, instead of
computing it from scratch. For the depicted mesh with one million vertices
our update algorithm computes a new factorization in 0.47 seconds whereas
the factorization of the desired systemmatrix for the region of interest using
Cholmod takes 3.4 seconds.

Note that these are actually three separate optimization problems,
one for each dimension. Here the index set B contains the con-
strained vertices. The matrix A ∈ Rn×n is symmetric and positive
semi-definite, in many cases themesh Laplacian [Botsch and Sorkine
2008; Meyer et al. 2003; Pinkall and Polthier 1993]. The order of
vertices in x is arranged so that the set of unconstrained vertices I
and the fixed vertices B form blocks:

x =
(
xI
xB

)
, A =

(
AII AIB

ABI ABB

)
. (2)

The minimization can be performed by substituting xB by the con-
strained vertex positions xc

B
and solving the resulting system(

AII AIB

) (xI
xc
B

)
= 0 ⇒ AIIxI = −AIBx

c
B
. (3)

ACM Transactions on Graphics, Vol. 37, No. 6, Article 230. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275107
https://doi.org/10.1145/3272127.3275107

230:2 • Herholz and Alexa

Because A is SPD, so is AII , and the system is commonly solved
by computing the Cholesky factorization AII = LLT followed by
performing back- and forward substitution. This is particularly
effective if the system is sparse. The sparsity of the resulting factor
can be further improved by reordering. We provide background on
sparse Cholesky factorization including pre-ordering in Section 3.
While solving a sparse system given its Cholesky factorization

is very fast, the necessary pre-ordering and factorization steps are
expensive computations. This can lead to problems for operations
that are intended for real-time interaction. Our central idea is to
re-use the ordering and factorization of a linear system defined on the
complete mesh to construct the factorization of a linear operator on a
sub-mesh. The first idea is straightforward: The reordering that is
necessary for the computation of Cholesky factors can be reused
for linear systems on sub-meshes by just keeping the vertex indices
in the same relative order. This avoids the time-consuming ordering
step for the local problem.

More significantly, we observe that the factors for the local prob-
lem can be derived from the factors of the global problem by a series
of rank-one updates (Section 4). This updates can be efficiently
performed by copying data from the global factor and running a
Cholesky factorization algorithm only on a subset of columns.
In Section 5, we first show that the non-zero structure of the

desired local Cholesky factor can be easily deferred from the global
factor. This observation is non-trivial as it is not generally true
for arbitrary sparse factorizations. Based on this observation we
develop an update strategy that is significantly faster than general
purpose rank-one updates [Davis and Hager 2000].
We compare the efficiency of our approach with complete re-

factorization for a range of different meshes and differently sized
sub-meshes. Reusing the ordering already provides a speedup for
solving local problems. Our update strategy results in significant
further progress. Compared to the common call to a matrix library,
which would perform pre-ordering and factorization, our update
strategy is significantly faster. We present detailed results in Sec-
tion 7. In general, every algorithm that requires solving several con-
strained local problems on a mesh can benefit from our approach.
This includes parameterization [Desbrun et al. 2002; Mullen et al.
2008], local mesh filtering [Desbrun et al. 1999] and constrained
heat diffusion [Crane et al. 2013].

2 RELATED WORK
Hecht at al. [2012] suggest a method which is similar in spirit to ours.
They apply partial refactorization to Cholesky factors in a nonlinear
finite element simulation of elastic objects. During the simulation
the problem is repeatedly linearized, leading to sparse linear systems.
The main observation is that in many cases the simulated object
and therefore the linear system only changes locally. These changes
in turn only affect certain parts of the Cholesky factor, which can
be partially refactored. This leads to an approximation that is good
enough for small time steps. The system is completely factored
only sporadically. Like our approach, this method leverages the
block structure of the Cholesky factor of a matrix that has been
rearranged using nested dissection reordering. The authors report a

two to three fold speedup compared to full refactorization at every
frame.

In a similar vein, Yeung et al. [2016] consider updates to a linear
FEM system when the structure of a simulated mesh is changing, e.g.
during a surgical simulation. They augment the matrix with addi-
tional rows and columns to account for new constraints effectively
modifying columns of the original matrix. The new system can be
solved by using the original factorized matrix in conjunction with
an iterative scheme. This method is very well suited for continuous
changes in mesh topology. After a certain number of iterations,
however, a new factorization has to be computed. Our approach on
the other hand is targeted towards incorporating many constraints
at once and would not be competitive if changes have to be made
one at a time. In that sense this method is complementary to ours.
Herholz et al. [2017] demonstrate how to exploit the structure

of the Cholesky factorization to efficiently solve linear systems
defined on a mesh when only a subset of the solution is required.
The Cholesky factor itself remains unchanged. With this technique
it is possible to solve local linear problems as long as they can be
formulated in terms of modifications of the right hand side only.
This includes Neumann boundary conditions when working with
mesh Laplacians. Dirichlet boundary conditions, i.e. constraining
certain vertex values, requires changes in the system matrix and,
consequently, the factorization.
Modifying a given Cholesky factorization has been an active

research area for many years. The central observation is that the
factorization of a given matrixA ∈ Rn×n can be modified to become
the factorization of a matrix A′ ∈ Rn×n with much less effort than
computing the new factorization as long as A′ has been obtained
from A by certain simple modifications. Not all modifications are
allowed since A′ has to stay symmetric and SPD. One class of mod-
ifications that necessarily respects these properties are rank-one
updates:

A′ = L′L′T = A + vvT = LLT + vvT. (4)

with v ∈ Rn . This type of modification appears quite naturally, e.g.
when adding an observation in a regression model that has to be
solved using least squares. Davis et al. [2000] provide an efficient
implementation of this method for sparse matrices. Special care
has to be taken when the non-zero structure of the factor changes,
which can generally happen. The method is very efficient if updates
are performed one at a time. If several updates are necessary at once,
i.e. A + VVT with V ∈ Rn×k , the update can be performed slightly
faster than consecutive rank-one updates, however, the amount of
speedup is limited to about a factor of two because updates can only
be efficiently processed in small batches [Davis and Hager 2009]. If
the update is of very low rank (i.e. k is very small) this method might
actually be faster than our approach. However, this assumption is
not true for almost all use cases considered here. In Section 7 we
compare the performance of our approach to multi-rank updates as
implemented in Cholmod.

It is one of our central observations that in our particular scenario,
where only very specific updates have to take place, the non-zero
structure is unaffected by the updates. We show how this simplifies
the operation and allows for much faster multi-rank updates.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 230. Publication date: November 2018.

Factor Once: Reusing Cholesky Factorizations on Sub-Meshes • 230:3

Fig. 2. Nested dissection reordering hierarchically divides the mesh into two
balanced parts separated by a small divider (top right). The mesh Laplacian
will then exhibit a block structure (top left). These blocks are preserved in
the Cholesky factor (bottom left) which has additional non-zero entries only
inside these blocks (red pixels). The block structure yields a fairly balanced
elimination tree (bottom right).

3 BACKGROUND: SPARSE CHOLESKY FACTORIZATION
Our approach is based on the Cholesky factorization of the lin-
ear system. We make use of several properties of sparse Cholesky
decompositions, its common data structures, and the basic factor-
ization algorithm. While this material is covered in the literature,
we provide the necessary basics as far as they are required for un-
derstanding our algorithm so that the paper is self-contained. The
reader familiar with the details of sparse Cholesky factorizations
may skip this section.

The factorization represents a symmetric and positive semi-definite
matrix A as the product of a lower triangular matrix and its trans-
pose

A = LLT with L ∈ Rn×n . (5)
The factorization can be used to efficiently solve a linear system of
the form Ax = b. To this end the substitute vector

y = LTx (6)

is defined which yields

Ax = b (7)

⇔ LLTx = b (8)
⇔ Ly = b (9)

Fig. 3. Schematic illustration of the left-looking Cholesky algorithm. The al-
gorithm subsequently computes the columns ℓi by using already computed
values to its left in the factor.

The vector y can then be determined by solving the triangular
system (9) (forward substitution). To obtain the final solution vector,
the triangular system (6) is solved (back substitution).
In our setting we are concerned with sparse matrices since it

would be infeasible, both in terms of memory and computation,
to work with dense factors. It is one of the favorable properties of
Cholesky factorizations that a sparse system matrix A leads to a
sparse Cholesky factorization in the sense that block structures are
preserved. The system matrix A in Figure 2 (upper left) is structured
into three blocks. The Cholesky factor of A (lower left) will have
additional entries (red pixels) but they will always fall within these
blocks. More specifically, if the first non-zero element in the i-th
row of A is the element ai j (this means aik = 0 for all k < j) it is
guaranteed that the same is true for the Cholesky factor i.e. lik = 0
for all k < j. This property can only be helpful if such a block
structure exists, however, this can usually be achieved by reordering
A.

Nested dissection reordering. The idea of nested dissection reorder-
ing is to recursively subdivide the mesh into two parts of roughly
the same number of vertices, separated only by a small set of ver-
tices (divider). Figure 2 illustrates one step of this procedure. By
sorting the vertices such that vertices in the two parts are sorted
subsequently followed by the dividing vertices one achieves the
desired block structure. The blocks can then recursively be subdi-
vided in the same manner. Since meshes in geometry processing are
usually embedded and edges connect spatially close vertices, it is
usually possible to find good dividers on Laplacian-type systems.
This makes nested dissection reordering very effective for problems
in geometry processing.

Left-looking Cholesky factorization. In principle there are many
ways to compute Cholesky factorizations. A popular method is the
so called left-looking algorithm that computes the factor L column
by column using the already computed columns to the left – hence
the name. Assume the first i − 1 columns of the factor have already
been computed and one wants to determine the i-th column (lii , ℓi)
(see Figure 3). For the diagonal value lii we get

l1 ∗ lT1 + l
2
ii = aii (10)

⇒ lii =
√
aii − l1 ∗ lT1 . (11)

ACM Transactions on Graphics, Vol. 37, No. 6, Article 230. Publication date: November 2018.

230:4 • Herholz and Alexa

Expressing ai with thematrix product on the left in Figure 3 provides
a relationship for ℓi :

L2 ∗ lT1 + lii ∗ ℓi = ai (12)

⇒ ℓi =
1
lii

(
ai − L2 ∗ lT1

)
. (13)

If the matrix is positive semi-definite, the square root in the ex-
pression for lii is real-valued. In many computer graphics applica-
tion the matrix might actually not be positive definite because of a
rank deficit. Due to numeric errors the square root might produce
complex values. This can be prevented by regularizing the system
matrix effectively adding a small multiple of the identity matrix to
the operator. Most importantly for our setting, this algorithm can
be efficiently implemented for sparse matrices. Equation (13) also
demonstrates why the block structure of A is preserved. If the k-th
row of L does not contain a non-zero until column i and the same
is true for A, the value of lk,i will also be zero.

Sparse matrix representation. Sparse matrices can be represented
in several ways with advantages for different access patterns or
modifications. For Cholesky factors and system matrices we use
the compressed column format which maintains three arrays: one
that holds all non-zero values in column major order, a second one
of the same size that stores the corresponding row indices and a
smaller array that contains pointers to the start of each column
in the row and value array respectively. It is generally very fast
to visit all non-zeros per column. To traverse one matrix row is
much less efficient. Alternatively the matrix can be represented in
a compressed row major order by interchanging the role of rows
and columns. All operations performed during the sparse Cholesky
factorization, as described in [Davis 2006], are carefully designed
with the compressed column format in mind.

Elimination Tree. Considering the left-looking Cholesky factor-
ization algorithm one can see that the values of the i-th column of
the Cholesky factor depend only on a sparse set of columns to the
left because ℓi is sparse (see equation 13). Knowing what columns
depend on each other is the key to our efficient factor update: Chang-
ing a set of columns in A only affects columns that depend on them
in the Cholesky factor.
The elimination tree [Liu 1990] (Figure 2, lower right) provides

a very efficient way of identifying the column dependencies. Each
node in this tree represents a column of the Cholesky factor. To find
the parent of the i-th column, the first off-diagonal non-zero in this
column is found. The row index of this value determines the parent
of i . If no such value exists the i-th node represents the root of the
tree. For meshes with more than one connected component multiple
roots exist and we actually have an elimination forest. We do not
consider this case here although it is a straight forward extension.

The crucial property of the elimination tree is that one can identify
all columns that depend on a specific column i by traversing the
tree up to its root starting at node i and collecting all visited nodes.
A proof of this fact can be found in [Liu 1990].

This makes an update quite efficient and also illustrates why
changing a column usually does not affect too many others: when
modifying a column in the blue block of Figure 2 (lower left) all

columns in the green block remain unaffected because they reside
on a separate sub-tree.

Sparse Cholesky. The left-looking Cholesky factorization can be
efficiently implemented for column oriented sparse matrices. The
computation proceeds in two phases. The symbolic phase builds
the elimination tree and uses it to analyze the non-zero pattern of
the Cholesky factor. During the numeric phase the actual values
are computed and stored in the prepared sparse matrix. Running
the left-looking Cholesky factorization proceeds by constructing L
column by column. The computation is dominated by the evaluation
of equation (13) which involves the multiplication of the block L2
with the row vector ℓ1. Due to the column oriented sparse matrix
format we do not have an efficient way to access the non-zero
pattern of a row. In our setting, however, we scan the rows ℓi of the
matrix one after another which enables us to use a simple pointer
per column that is incremented whenever a value in the current
row is accessed. With this pointer one has access to the value of a
column in that row. However, this technique is only beneficial if
we know the non-zero pattern of ℓi because every column pointer
needs to be checked for every row otherwise. This non-zero pattern
can be found quite efficiently by traversing the elimination tree,
starting from all non-zeros in ai (see [Davis 2006]).

In our implementation we take a slightly different route. During
the symbolic phase we not only compute the combinatorial structure
of the matrix in column oriented form but also in row oriented form.
This gives us easy access to each column in a row and makes row
access more efficient – at the cost of storage. Moreover, this row
information is needed during our partial update procedure.

Supernodal Cholesky. When inspecting the elimination tree one
can identify strings of nodes that have only one child. Since travers-
ing the tree determines the non-zero structure of each column it
can be shown that columns of the Cholesky factor in such a string
have two properties: They are
immediate neighbors and they
have, apart from diagonal en-
tries, the same non-zero pattern.
It is therefore beneficial to aggre-
gate these columns into so called
supernodes to store the common
row information only once and
keep the values of such a group
of columns as a dense matrix.
The inset highlights supernodes
of a Cholesky factor in red. Su-
pernodes are not only convenient for storage, they can also be
exploited during computation, leveraging fast dense matrix kernels
(BLAS / LAPACK). Our implementation based on Cholmod makes
extensive use of this fact. However, for clarity of exposition we
describe our algorithm in terms of simple columns and hide the
implementation details of the supernodal version of the algorithm.
For more detail see the book by Davis [2006].

ACM Transactions on Graphics, Vol. 37, No. 6, Article 230. Publication date: November 2018.

Factor Once: Reusing Cholesky Factorizations on Sub-Meshes • 230:5

4 APPROACH
Our goal is to use the factorizationA = LLT of the (global) matrix for
a local problem on the samemesh. Note thatA has been reordered to
optimize the sparsity of the factor L; changing the order of A would
require recomputing the factorization. This means the common
approach of ordering the system such that the unconstrained and
constrained vertices form blocks (as described in the introduction)
is infeasible.

Nonetheless, AII and AIB can still be expressed in terms of sub-
blocks of L. Let ai j be an arbitrary matrix entry of A. This entry can
be represented by the inner product ai j = lTi lj of two rows of the
Cholesky factor L. These two rows can be split into columns for B
and I, which can be interpreted as computing the inner product in
a different order:

ai j = lTi lj =
∑
k

lik ljk =
∑
k ∈I

lik ljk +
∑
k ∈B

lik ljk = lTiI ljI + l
T
iB ljB .

(14)
Putting this together for all entries ai j of AII and AIB yields:

AII = LIIL
T
II
+ LIBL

T
IB

(15)

AIB = LIIL
T
BI
+ LIBL

T
BB
. (16)

Note that if the system was ordered such that the indices in I came
first, the zero structure of L would imply LIB = 0 and LII would
be sufficient to solve the local problem. In general, however, this is
not the case and Eq. (15) is the key to generate the desired factor: we
are updating the Cholesky factor LII to become the factorization
of AII .
It has been observed [Davis and Hager 1999] that a low-rank

update will only affect a small set of columns. Instead of using the
general purpose rank-one update procedure for sparse Cholesky
factorizations, which is prohibitively slow when changing a larger
set of columns, we identify the set of columns that will change
and rerun the factorization algorithm only on these columns, while
simply copying columns that remain unchanged from the matrix
LII .

5 SPARSE UPDATES
Our central observation is that in order to compute the Cholesky
factor of a submatrix AII the submatrix of the factor LII has to
be modified by means of a low-rank update, affecting only a small
number of columns inmost cases. Moreover, the set of these columns
can be determined very efficiently. Furthermore the update leaves
the sparsity structure of the sub factor unaffected, allowing us to
just copy the data and refactor only those columns that need to be
updated.

Sparsity structure. Changing the non-zero structure of a sparse
matrix can be computationally challenging since inserting values
in the continuous row index and value arrays potentially involves
reallocation and shifting of a lot of entries. It is therefore beneficial
in our situation that the non-zero structure of the factor matrix
LII does not change after it has been extracted from L. Note that a
non-zero in a sparse matrix always refers to a structural non-zero,
that is, a value that is explicitly represented in the matrix – it may
contain the numerical value 0. To see that the structure of the matrix

LII does not have to be changed when performing the update we
have to show that the same structure can represent the Cholesky
factorization of AII .
Proof: Consider an element ai j of A with i, j ∈ I. In order to
represent this element the value(

LIIL
T
II

)
i j
= liI l

T
jI (17)

can not be structurally zero where liI and ljI are rows in LII .
Assume i ≥ j without loss of generality. Since the non-zero structure
of Cholesky factors only contain additional non-zeros as compared
to the lower triangular part of the system matrix A, we know that
all non-zeros in AII are also non-zero in LII . This means that li, j
and lj, j are both non-zero and it follows that the inner product in
(17) does not vanish in general. □

Due to this fact, AII can indeed be represented by a Cholesky
factorwith the same sparsity structure as LII . This saves us the need
to analyze the sparsity structure of L′ based on its elimination tree.
However, it is possible that the updated Cholesky factors explicitly
store elements that are structurally zero as an explicit zero. In section
7 we show that these values are actually quite rare.

Update Algorithm. Our algorithm proceeds as depicted in Figure 4.
Once the sub-mesh consisting of vertices indexed by I is selected,
the submatrix consisting of rows and columns in I is extracted from
L. The update

AII = L′L′T = LIIL
T
II
+ LIBL

T
IB

(18)

can be thought of as a series of rank one updates of the form

L′kL
′T
k = Lk−1L

′T
k−1 + ℓIbk ℓ

T
Ibk

(19)

where k > 0 and ℓIbk is a column in LIB and L′0 = LII . The
columns in which L′k and L′k−1 differ can be determined efficiently
by finding the first off-diagonal non-zero in ℓIbk . The row index
of this value is then used to traverse the elimination tree of LII
upwards to the root. The set of nodes that are discovered along
the way represent the set of columns that will change due to the
update. The columns that are modified across all rank one updates
are found by traversing the tree starting from the first entries in
every column of LIB (depicted red in Figure 4c,d). What contributes
to the efficiency of the traversal is that it is stopped as soon as a
node is found that has been discovered and treated previously. At
this point it is guaranteed that all nodes up to the root have already
been discovered while traversing from a different start node before.

The performance of the algorithm depends critically on the num-
ber of columns we have to update. Luckily the nested dissection
structure ensures that in most practical cases this number is low
compared to the recomputation of all columns – as would be needed
for the full refactorization of the sub-mesh.

To see this, consider the selected surface patch (turquoise region
in Figure 4a). As the surface patch only covers a very localized
part of the mesh, the matrix LIB will be very sparse with most of
its columns containing only zeros. This is despite its large dimen-
sions, covering all columns of vertices not contained in I. Moreover,
considering the position of the first non-zero per column in the elim-
ination tree of LII (red in Figure 4c,d), it becomes clear that they
will only induce a change in a small subset of columns. Note that

ACM Transactions on Graphics, Vol. 37, No. 6, Article 230. Publication date: November 2018.

230:6 • Herholz and Alexa

Fig. 4. (a) The turquoise section of the bunny model, consisting of vertices indexed by I, is selected and a Cholesky factor L′ for this sub-mesh is to be
computed. The Cholesky factor of the full mesh L induces an elimination tree, the first three levels of which are highlighted on the mesh. (b) The submatrix
LII , highlighted in (a), is extracted. (c) The matrix LIB can be used to determine the columns in LII that need to be updated. To do this, the index of the first
entry in each column (highlighted in red) is identified and the elimination tree is traversed upwards, collecting the indices of columns that need to be updated
(highlighted in (e)). To obtain the numerical values for the updated Cholesky factor L′ the left-looking Cholesky factorization algorithm is run only on the
highlighted columns while copying data from LII for all other columns.

there are only seven distinct row indices highlighted in Figure 4c.
The columns corresponding to discovered nodes are highlighted in
Figure 4e. Values in not highlighted columns are directly copied from
L and will not be touched by the update procedure. All sub-trees that
are completely contained in I are skipped when updating LII since
LIB cannot have a row index contained in these sub-trees. Again
the block structure given by the nested dissection ordering limits the
amount of computation. After the columns that are affected by the
update are determined, the left-looking Cholesky algorithm is run
on the sub-factor, skipping all columns that remain unchanged. Our
algorithm can be summarized as follows. Given the vertex indices
of the sub-mesh vertices I

(1) Compute the elimination tree of L′.
(2) Find the first non-zero in all columns of LIB .
(3) Traverse the elimination tree to its root starting at these

indices and mark all columns corresponding to discovered
nodes.

(4) Initialize the Cholesky factor L′ of AII based on its elimina-
tion tree.

(5) Fill all unmarked columns of L′ with corresponding values
from LII and set all marked columns to zero.

(6) Run the left-looking Cholesky factorization of AII using the
initialized factor while skipping unmarked columns.

Row indices. As discussed in Section 3, we store information about
all columns in a row explicitly. As we are skipping most columns
during factorization we cannot use techniques that rely on the
fact that rows are accessed one after the other in order to access
all values in a row. The row information we maintain has to be
recomputed when extracting the sub-factor LII , producing only a
small overhead, however, it still doubles the amount of information
necessary to store the non-zero structure of LII . Since the algorithm
is implemented in terms of supernodes instead of columns, the
amount of structural information necessary is reduced compared
to a regular sparse format. In Section 7 we analyze this overhead

which amounts to below 15% of the total memory used to store the
factorization in all our experiments.

6 IMPLEMENTATION
We implemented our algorithm from scratch in C++ inspired by
Cholmod [Chen et al. 2008]. Since supernodal Cholesky factorization
algorithms can leverage fast BLAS kernels we use the Intel MKL
[int 2009] with openMP support. To ensure a fair comparison, we
link Cholmod with the same library for our performance evaluation.
Besides the need for a BLAS/LAPACK compatible library, the code
we provide is self contained, however, if desired, it can be used
in conjunction with Eigen [Guennebaud et al. 2010]. For nested
dissection reordering we employ Metis [Karypis and Kumar 1998].
All timings have been conducted on a computer with a 3.49 GHz
Intel Core i7 processor (four physical cores) and 32 GB of RAM.

7 EVALUATION
To evaluate performance we compare our approach to Cholmod
[Chen et al. 2008]. For a set of meshes of different sizes (shown
in Figure 5), patches are generated by randomly selecting a vertex
and then collecting 10%, 25% or 50% of all vertices closest to that
vertex. For each such patch, the sub-factor is extracted and updated
according to our algorithm.

The traditional approach consists in building the operator for the
surface patch and refactoring it from scratch using Cholmod. For a
fair comparison, we do not include setup operations like forming a
sub-mesh and setting up the operator matrix. Instead the submatrix
AII is extracted directly from A, which is much faster. We observe
some variance in performance – our approach depends on how the
patch appears in the elimination tree. When selecting a well sepa-
rated feature, like in Figure 4, it is very likely that the sub-factor will
contain large sub-trees of the elimination tree. Any sub-tree that is
completely contained in the patch can be copied without modifica-
tion. Selecting patches at random is therefore a slight disadvantage
for our method.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 230. Publication date: November 2018.

Factor Once: Reusing Cholesky Factorizations on Sub-Meshes • 230:7
sp

ee
du

p
fa

ct
or

 fo
r

sp
ee

du
p

fa
ct

or
 fo

r

fraction of vertices

12
8

6

4

2

9

8

7

6

5

4

3

9
9 8

6

4

2

0

8

7

6

5

4

3

8

7

6

5

4

3

10

8

6

4

10% 25% 50%

10% 25% 50% 10% 25% 50% 10% 25% 50%

10% 25% 50% 10% 25% 50%

5M vertices 1M vertices 250K vertices

Fig. 5. Speedup factor of our update method compared to refactorization
using Cholmod. The plots show the total range and quartiles for updates
consisting of 10%, 25% and 50% of all vertices on three different meshes. Each
experiment has been repeated 50 times for the mesh Laplacian A (upper
row) and ATA (lower row).

Because the nested dissection ordering is spatially adaptive, it
makes sense to extract sub-factors and submatrices in ascending
order. In other words, the set of patch indices I is sorted. For a
compact, localized patch, a restriction of the ordering to that patch
will yield a good block structure which in turn guarantees a sparse
factorization and fast updates. This is illustrated in Figure 4b. Se-
lecting the submatrix from L while keeping the relative ordering of
columns and rows produces a well ordered matrix LII .

However, it might be possible to improve sparsity by reordering
the matrix AII , which is not an option for our update procedure.
To test if Cholmod can profit from sorting the matrix, we ran our ex-
periments with Cholmod twice, turning resorting on and off respec-
tively. Across all instances, Cholmod could not amortize resorting
times during the factorization phase. It appears that the matrices
are already sorted in a way that allows efficient computation, i.e.
induce a well balanced elimination tree so the benefit of resorting
is negligible compared to the necessary computation.

Across all experiments, our method outperformed the costly refac-
torization step by a factor of 4 to 6 on average. Figure 5 highlights

fraction of vertices

Refactorization
using Cholmod

tim
e

(s
)

20

15

10

5

Speedup
(Choldmod / ours)

sp
ee

du
p

fa
ct

or

10

8

6

4

Fraction of values mo ed
during update

fr
ac

tio
n

of
 u

pd
at

ed
 v

al
ue

s

0.30

0.25

0.20

0.15

0.10

0.05

Updating (ours)20

15

10

5

10% 15% 20% 25% 30%35%40%45%50%10% 15% 20% 25% 30%35%40%45%50%

10% 15% 20% 25% 30%35%40%45%50%10% 15% 20% 25% 30%35%40%45%50%

tim
e

(s
)

Fig. 6. Detailed statistics for the Cholesky factor of ATA on a mesh with
5 million vertices. Absolute updating and factorization times across 50
experiments are illustrated (top row) along with the distribution of speedup
factors and the fraction of values that need to be updated in LII .

10% of vertices

0

5
10
15
20

0

5

10

15

0

5

10

20

15

0
2

6
4

10
12

8

0
2

6
4

10
12

8

0

5

10

15

0

5

10

15

20

0

5

10

15

0

5

10

15
20 15% of vertices 20% of vertices

25% of vertices 30% of vertices 35% of vertices

40% of vertices 45% of vertices 50% of vertices

3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10

time (s)

Fig. 7. Histograms of speedup for updates of the Cholesky factor of ATA
on a mesh with 5 million vertices. The diagrams show the frequency of
occurrence in 50 random updates producing Cholesky factorizations for
sub-meshes of the given size.

how total mesh size affects our algorithm. The plots show the mean
(black), quartiles (blue) and the range (gray) of speedup factors
across 50 experiments. We present experiments on three meshes of
different sizes updating the factorization of the mesh Laplacian A
and ATA used in least squares systems.

Our method performs better for large patches on large meshes as
in these cases a lot of data can be reused, which would otherwise
have to recomputed. Best performance is to be expected if a majority
of vertices is selected forming a locally separated patch as shown
in Figure 1. This also explains the high variance towards larger

ACM Transactions on Graphics, Vol. 37, No. 6, Article 230. Publication date: November 2018.

230:8 • Herholz and Alexa

2

4

6

8

10 Explicit zeros

0

5

10

15 Additional memory

0

Fr
ac

tio
n

(‰
)

Fr
ac

tio
n

(%
)

10% 25% 50% 10% 25% 50%

fraction of vertices

Fig. 8. Left: The fraction of matrix values that are explicitly stored in our
updated factorization although they are actually zero. Right: The amount of
extra memory used by our factorization to store additional row information.

mem (MB) sub-mesh vertices
10% 25% 50%

ve
rt
ic
es 250k 19 (17) 45 (40) 111 (100)

1M 114 (113) 324 (294) 697 (637)
5M 599 (539) 1626 (1476) 3395 (3096)

Table 1. Memory consumptions (in MB) for factors computed using our
updating algorithm and using refactorization (in brackets).

speedups whenever the randomly chosen patch happened to select
a well separated region.

The performance of Cholmod is measured separately and shown
in Figure 6. The data shows almost linear growth in time with
system size. The performance of our method depends critically on
the fraction of values that have to be updated in the Cholesky factor
(Figure 6, right). We can see, again, that updating becomes more
beneficial for larger patch sizes.

Figure 7 shows histograms of performance data for a mesh with
5 million vertices across 50 random experiments for each sub-mesh
size (Figure 5, left). The bimodal distribution for larger neighbor-
hoods can be explained by patches that cover the complete upper
or lower half of the mesh, and patches that cut the mesh in half,
therefore having a larger interface region between vertices of the
patch and the rest of the mesh.

Performance breakdown. To get a better understanding of how
much each step of our algorithm contributes to the overall runtime,
we break down the total runtime by setup costs such as determin-
ing the columns that need to be updated (red), copying data from

0.1

0.3

0.5

tim
e

(s
)

10% 25% 50%

the global Cholesky factor (green) and run-
ning the refactorization (blue). Again, we av-
eraged values for 50 experiments on a mesh
of one million vertices, selecting patches of
105, 2.5 × 105 and 5 × 105 vertices respec-
tively. Generally 30% of the time is used to
copy the unchanged values to the new factor.
The refactorization accounts for around 68%
and the rest of the time is spend for graph tra-

versal to find the columns that need to be updated. These numbers
are consistent across mesh and sub-mesh sizes.

Memory cost. Compared to refactoring from scratch our algo-
rithm needs to maintain the matrix structure in row-major form

1‰ 2‰ 3‰ 4‰ 5‰ 6‰ 7‰ 8‰ 9‰ 1‰ 2‰ 3‰ 4‰ 5‰ 6‰ 7‰ 8‰ 9‰

fraction of vertices

250k vertices

1M vertices

Speedup (Cholmod update / ours)

4

8

12

16

20

0

sp
ee

du
p

fa
ct

or

4

8

12

16

20

0

Fig. 9. Performance comparison of our algorithm and the update procedure
implemented in Cholmod. Even for very small meshes and sub-meshes our
method outperforms Cholmod significantly.

as well. This amounts to some extra memory that we measure as
percentage of the memory for this data with respect to the total
memory occupied by the Cholesky factor (Figure 8, right). Again we
used a mesh with one million vertices and different sub-mesh sizes.
The fraction of additional memory decreases with sub-mesh size and
stays below 15% in all our experiments. The results are also consis-
tent across mesh sizes. Table 1 shows absolute memory consumption
in MB for factors computed by updating a global factorization com-
pared to factorizations computed from scratch. In Section 5 we have
shown that the non-zero structure of the extracted sub-factor LII
is compatible with the updated factor. However, there are possibly
non-zeros present in LII that are zero in L′. This might be another
source for additional memory. In Figure 8 (left) we show that these
structural non-zeros that have the numerical value zero amount for
less than 0.1% of all values and therefore occupy only a negligible
amount of extra memory.

Comparison to low-rank updates. Cholmod provides a method to
update Cholesky factors when the original matrix has been updated
by a low rank modification of the form A + VVT with V ∈ Rn×k

[Davis and Hager 2009]. This method is quite efficient when the
update has low rank (i.e. k is very small). We could use this method
to perform the update in Equation (18), which is the central step in
our algorithm. Even for very small sub-meshes with less than 0.1%
of the vertices our algorithm outperforms Cholmod’s update proce-
dure (Figure 9). The speedup of our method compared to Cholmod
becomes more extreme for larger meshes and we conclude that our
algorithm is to be preferred for almost all practical usage scenar-
ios where sub-meshes of reasonable size are considered. However,
when updating only a few rows of a least squares system to con-
strain single vertices, which might for example be necessary when
constructing Least Squares Meshes [Sorkine and Cohen-Or 2004],
Cholmod’s algorithm will be faster.

8 DISCUSSION & CONCLUSION
We proposed a method to quickly build a sparse Cholesky factoriza-
tion for a linear operator defined on a localized sub-mesh using a
factorization of an operator defined on the full mesh. This opera-
tion is more efficient than constructing a new factorization for that
sub-mesh from scratch. Depending on the shape and size of the
sub-mesh we observe speedup factors of 4 to 6 on average, how-
ever, this factor gets higher for sub-meshes covering a significant

ACM Transactions on Graphics, Vol. 37, No. 6, Article 230. Publication date: November 2018.

Factor Once: Reusing Cholesky Factorizations on Sub-Meshes • 230:9

Fig. 10. Non local patches (left) will induce sub-factors LII collecting data
frommany different sub-trees of the elimination tree of L (center, columns in
I colored) and consequently require costly updates of LII (right, columns
requiring an update are highlighted).

number of vertices on large meshes. These are the situations where
performance is most critical and applications will benefit from our
algorithm the most. Moreover, our approach was never slower than
a complete refactorization in our experiments because it just per-
forms a partial refactorization, reducing to a full refactorization in
the worst case, which is very unlikely for sensible regions of interest.
An example of an update that is not very efficient is depicted in Fig-
ure 10. Selected vertices (in red) are not localized and the columns
and rows that are selected by LII are scattered all over L. This also
means that many sub-trees of the elimination tree are covered and
a large number of columns have to be updated as depicted in the
right image. However even in this extreme example not all columns
of the factor need to be updated and we can slightly outperform a
complete refactorization.
Compared to other methods for fast factorization updates, like

[Yeung et al. 2016], our method is not approximate. We construct
the unique Cholesky factor of the constrained matrix, moreover,
since we are just reusing information that has been already com-
puted and compute updated columns from scratch, our algorithm
is numerically as stable as a complete refactorization. This also en-
ables cascading updates: After computing the Cholesky factor with
respect to a sub-mesh by our update procedure it can be used to
compute a Cholesky factor on a new sub-mesh contained in the
first one. This is a reasonable scenario when interactively editing a
mesh.

As the solution of linear systems is a fundamental building block
in geometry processing and simulation we expect a variety of meth-
ods to benefit from our algorithm.We provide ready to use C++ code
that only depends on a BLAS/LAPACK implementation to facilitate
further applications. The code can be conveniently used with Eigen
[Guennebaud et al. 2010] sparse matrices.

ACKNOWLEDGMENTS
We thank David Lindlbauer for helping us create the figures in this
paper and Timothy A. Davis for providing Cholmod. This work was
supported by the German Federal Ministry for Economic Affairs
and Energy (BMWi) under Grant No. 01MT16004D.

REFERENCES
2009. Intel Math Kernel Library. Reference Manual. Intel Corporation.
Mario Botsch and Olga Sorkine. 2008. On Linear Variational Surface Deformation

Methods. IEEE Transactions on Visualization and Computer Graphics 14, 1 (Jan 2008),
213–230. https://doi.org/10.1109/TVCG.2007.1054

Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012.
Shape-Up: Shaping Discrete Geometry with Projections. Computer Graphics Forum
31, 5 (2012), 1657–1667. https://doi.org/10.1111/j.1467-8659.2012.03171.x

Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate. ACM Transactions on Mathematical Software (TOMS) 35, 3 (2008),
22.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in Heat: A
New Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph. 32,
5, Article 152 (Oct. 2013), 11 pages. https://doi.org/10.1145/2516971.2516977

T. Davis and W. Hager. 1999. Modifying a Sparse Cholesky Factorization. SIAM J.
Matrix Anal. Appl. 20, 3 (1999), 606–627. https://doi.org/10.1137/S0895479897321076

T. A. Davis. 2006. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, PA.
Timothy A. Davis andWilliamW. Hager. 2000. Multiple-Rank Modifications of a Sparse

Cholesky Factorization. SIAM J. Matrix Anal. Appl. 22, 4 (July 2000), 997–1013.
https://doi.org/10.1137/S0895479899357346

Timothy A. Davis andWilliamW. Hager. 2009. Dynamic Supernodes in Sparse Cholesky
Update/Downdate and Triangular Solves. ACM Trans. Math. Softw. 35, 4, Article 27
(Feb. 2009), 23 pages. https://doi.org/10.1145/1462173.1462176

Mathieu Desbrun, Mark Meyer, and Pierre Alliez. 2002. Intrinsic Parameterizations of
Surface Meshes. Computer Graphics Forum 21, 3 (2002), 209–218. https://doi.org/10.
1111/1467-8659.00580

Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit Fairing
of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 317–324.
https://doi.org/10.1145/311535.311576

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien. 2012. Updated

Sparse Cholesky Factors for Corotational Elastodynamics. ACM Transactions on
Graphics 31, 5 (oct 2012), 123:1–13. https://doi.org/10.1145/2231816.2231821

Philipp Herholz, Timothy A. Davis, and Marc Alexa. 2017. Localized Solutions of Sparse
Linear Systems for Geometry Processing. ACM Trans. Graph. 36, 6, Article 183 (Nov.
2017), 8 pages. https://doi.org/10.1145/3130800.3130849

George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1 (1998),
359–392.

Joseph W.H. Liu. 1990. The Role of Elimination Trees in Sparse Factorization. SIAM J.
Matrix Anal. Appl. 11, 1 (1990), 134–172. https://doi.org/10.1137/0611010

Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. 2003. Discrete
Differential-Geometry Operators for Triangulated 2-Manifolds. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 35–57. https://doi.org/10.1007/978-3-662-05105-4_2

Patrick Mullen, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. 2008. Spectral Confor-
mal Parameterization. In Proceedings of the Symposium on Geometry Processing (SGP
’08). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 1487–1494.
http://dl.acm.org/citation.cfm?id=1731309.1731335

Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and
their conjugates. Experim. Math. 2 (1993), 15–36.

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible Surface Modeling. In Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP ’07).
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 109–116.

Olga Sorkine and Daniel Cohen-Or. 2004. Least-Squares Meshes. In Proceedings of the
Shape Modeling International 2004 (SMI ’04). IEEE Computer Society, Washington,
DC, USA, 191–199. https://doi.org/10.1109/SMI.2004.38

Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and Hans-
Peter Seidel. 2004. Laplacian Surface Editing. In Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing (SGP ’04). ACM, New York,
NY, USA, 175–184. https://doi.org/10.1145/1057432.1057456

Yu-Hong Yeung, Jessica Crouch, and Alex Pothen. 2016. Interactively Cutting and
Constraining Vertices in Meshes Using Augmented Matrices. ACM Trans. Graph.
35, 2, Article 18 (Feb. 2016), 17 pages. https://doi.org/10.1145/2856317

ACM Transactions on Graphics, Vol. 37, No. 6, Article 230. Publication date: November 2018.

https://doi.org/10.1109/TVCG.2007.1054
https://doi.org/10.1111/j.1467-8659.2012.03171.x
https://doi.org/10.1145/2516971.2516977
https://doi.org/10.1137/S0895479897321076
https://doi.org/10.1137/S0895479899357346
https://doi.org/10.1145/1462173.1462176
https://doi.org/10.1111/1467-8659.00580
https://doi.org/10.1111/1467-8659.00580
https://doi.org/10.1145/311535.311576
https://doi.org/10.1145/2231816.2231821
https://doi.org/10.1145/3130800.3130849
https://doi.org/10.1137/0611010
https://doi.org/10.1007/978-3-662-05105-4_2
http://dl.acm.org/citation.cfm?id=1731309.1731335
https://doi.org/10.1109/SMI.2004.38
https://doi.org/10.1145/1057432.1057456
https://doi.org/10.1145/2856317

	Abstract
	1 Introduction
	2 Related Work
	3 Background: Sparse Cholesky Factorization
	4 Approach
	5 Sparse Updates
	6 Implementation
	7 Evaluation
	8 Discussion & Conclusion
	Acknowledgments
	References

