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Efficient Computation of Smoothed Exponential Maps

Philipp Herholz and Marc Alexa

Abstract
Many applications in geometry processing require the computation of local parameterizations on a surface mesh at interactive
rates. A popular approach is to compute local exponential maps, i.e. parameterizations that preserve distance and angle to the
origin of the map. We extend the computation of geodesic distance by heat diffusion to also determine angular information for
the geodesic curves. This approach has two important benefits compared to fast approximate as well as exact forward tracing of
the distance function: First, it allows generating smoother maps, avoiding discontinuities. Second, exploiting the factorization
of the global Laplace-Beltrami operator of the mesh and using recent localized solution techniques, the computation is more
efficient even compared to fast approximate solutions based on Dijkstra’s algorithm.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction

Many interactive geometry processing applications require local
parameterizations around a point of interest, e.g. for local texture
mapping (decals) or editing [TSS∗11, Sch13]. Desirable properties
for these maps are:

• their computation should be as fast as possible, enabling opera-
tions at interactive rates for moderately sized regions, and
• the isometric distortion of the parameterization should be small

around the point of interest and then possibly degrade with dis-
tance.

Let p be the desired origin of the local parameterization. Fast lo-
cal parameterization is commonly based on the idea of tracing
geodesics emanating from p. Each point can then be parameterized
based on its geodesic distance to p and the angle of this geodesic
at p relative to a fixed reference direction in the tangent frame. In
the plane, using straight lines as paths, this approach leads to po-
lar coordinates. The concept analogous to straight lines on a surface
are geodesic paths leading to geodesic polar coordinates. Geodesics
connect two points along a shortest path on the surface. In contrast
to the planar setting, there might be more than one shortest path.
On the sphere, for example, there are infinitely many shortest path
connecting a point to its antipode. Local parameterizations based
on geodesics therefore only make sense for regions where there is a
unique shortest geodesic for every point connecting it to the central
point p. In this case the polar coordinates induced by the geodesics
are refereed to as log map or, arguably more common, by its in-
verse, the exponential map (see Figure 4).

While tracing geodesics may be natural and the concept of expo-
nential maps may be well established there are fundamental and
practical problems: distinct geodesic curves emanating from the
origin p may intersect, leading to singularities in the parameteri-

Figure 1: Computing the heat kernel centered at a small set of
vertices (left) can be used to efficiently compute exponential maps
(right).

zation. Also, computing exact geodesic curves on discrete surfaces
is expensive. This suggests that one rather wants to approximate
the exponential map, focusing on fast computation rather than gen-
erating exact geodesic distances and angles [SGW06].

For discrete surfaces Crane et al. [CWW13] show how distances
can be computed by solving sparse linear systems. In particular
they observe that gradients of the discrete heat kernel at a specific
vertex closely approximate gradients of the distance field. Our tech-
nical contribution is an extension of this method to also determine
the required angular information at the center vertex (see Figure 1).
Since our method is based on evaluating angles of gradients formed
with a fixed reference direction it inherits the robustness of the orig-
inal method. As a result, we can efficiently compute both, distances
as well as angles, by solving sparse linear systems.
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The heat kernel is the result of simulating heat diffusion for a
short time starting with a singular heat source. For larger times,
however, one gets curves that resemble geodesics but are smoother.
In other words, the diffusion time provides a parameter that allows
to control the smoothness of the map. This property is useful in
presence of surface features that would cause the exact exponential
map to be discontinuous or exhibit large distortion.

Defining the linear systems on the local surface patch and then
solving them using either direct or iterative methods would be sig-
nificantly slower than forward traversals from the center vertex.
However, Herholz et al. [HDA17] demonstrate how to reuse the
factorization of global systems for local diffusion problems, result-
ing in a significant speedup for the type of problem we consider.
Our central observation is that the computation of distances and
angles is in fact faster than methods based on Dijkstra’s algorithm.
We believe this is a counter-intuitive and very useful result. It can
be explained by the fact that the factorization of the global system
is effectively a precomputation step, which is exploited in the solu-
tion of a particular local problem.

We demonstrate how to exploit the symmetry of the diffusion
problem to obtain angular information for all vertices in a specific
region using only a few local solves of the prefactored system.

This allows us to compute the angles at almost negligible extra
cost compared to the distances along the paths. We demonstrate that
our method is not only overall faster than existing techniques but
also that the smoothness resulting from using diffusion for the def-
inition of paths avoids fold-over and distortions occurring in exact
exponential maps or Dijsktra-based approximations.

2. Related work

Our work aims at the fast generation of local parameterizations,
suitable for use in interactive applications. We focus our description
of related work on the subset of local parameterization techniques
that are capable of generating parameterizations at interactive rates.
We will describe work that we make use of or that is comparable in
certain aspects in the respective later sections of this paper.

We assume the shape we consider is given as a triangle mesh.
The mesh M is represented as a set of vertices vi ∈ R3, i ∈
[0, . . . ,n− 1], a set of edges {(i, j)} = E and a set of triangles
{(i, j,k)}= F .

Schmidt et al. [SGW06] (DEM) approximate exponential maps
at a vertex vi by augmenting Dijkstra’s algorithm. For each vertex
v j an arbitrary tangent frame Fj orthogonal to the vertex normal is
determined. Next, local exponential maps for each vertex are com-
puted by rotating each adjacent edge of that vertex into the tangent
frame. To express vectors in a tangent frame Fj with respect to Fi
a rotation aligning both frames is computed. To find the final expo-
nential map, the mesh graph is traversed using Dijkstra’s algorithm
starting at vertex vi. When traversing an edge its local exponen-
tial map representation is rotated to the reference frame and added
up. The robustness of this approach can be improved by averaging
local exponential maps from all already visited neighbors in each
Dijkstra step [Sch10]. We use this robust version of the algorithm
in our comparisons.

The algorithm merely computes an approximation of the expo-
nential map because it only uses linear isotropic mappings between
coordinate systems and approximates the real geodesic by an edge
path. Nevertheless, the mappings produced resemble exact expo-
nential maps nicely in many practical cases.

Malvær et al. [MR12] (DGPC) also propagate information using
a Dijkstra-like algorithm. They proceed by inferring information
for a vertex in a triangle when distance information to both other
vertices is known. To this end a virtual source point in the triangle
plane is computed that has the correct distance to both vertices.
The authors report increased accuracy as compared to Schmidt et
al. [SGW06], assuming exact exponential maps as the reference.

Exact exponential maps can be defined using exact polyhe-
dral geodesics, i.e. the shortest paths connecting two vertices
on the mesh geometry. There are several algorithms computing
this piecewise linear path. While earlier approaches where rather
slow [MMP87, CH90] more sophisticated implementations could
improve performance significantly [SSK∗05, XW09, WFW∗17].
Some of these algorithms can sacrifice accuracy for performance.
Ying et al. [YWH13] present an algorithm with tunable accuracy
that also propagates angular information thus producing all infor-
mation needed for a exponential map. The authors report that they
can outperform Crane et al. [CWW13] when the accuracy is rel-
atively low but fail to match their performance when compara-
ble accuracy is requested. Precomputation times are several orders
of magnitude higher than for the method of Crane et al. in that
case. Since our algorithm has essentially the same precomputa-
tion step as Crane et al. [CWW13], this comparison carries over
to our method. Algorithms that compute polyhedral geodesics, ei-
ther exact or approximate, have the advantage that they are usually
not affected by the triangulation quality in contrast to heat based
methods that can exhibit artifacts for anisotropic, irregular and non-
Delaunay meshes. This comes usually at a higher performance cost.
Moreover, we have found exponential maps based on polyhedral al-
gorithms to lack smoothness because angles are strongly influenced
by the shape of triangles adjacent to the source vertex. Furthermore,
even the smallest cavity on a smooth mesh will lead to artifacts
due to non-unique geodesics. We argue that smoothed versions of
the exponential map, as computed by our heat based method, are
preferable over exact geodesic exponential maps in many scenar-
ios.

Sun et al. [SZZ∗13] compute local stroke parameterizations en-
abling texture manipulation on a mesh. They employ exact poly-
hedral geodesics based on on Xin et al.’s work [XW09, XYH11].
Each point close to a stroke is parameterized by its distance to the
stroke and the arclength at the closest point.

Exponential maps on triangular meshes have recently be used to
define local charts for convolutional neural networks [MBBV15].
In these applications very fast approximations of the exponen-
tial map for small neighborhoods are required. This emphasis on
performance, however, can introduce significant inaccuracies that
seem to be tolerable for this specific task.

In concurrent work Sharp et al. [SSC18] introduce a heat based
method to perform parallel transport of vector valued data on
meshes. The basic idea of their method is similar to ours, yet they
approach the development from the perspective of generalizing the
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heat method. This naturally leads to stronger theoretical founda-
tion. They also provide a wide range of different instances for
specific problems, including how to quickly compute exponential
maps.

In contrast, we focus on the specific problem and provide a de-
tailed analysis of the preservation of length and angles as well as
the behavior of singularities w.r.t. the time step, and contrast this
behavior with a range of possibly competing methods.

3. Preliminaries

We introduce some notation and quantities associated with the tri-
angulated surface. In particular, we need the area vector per face
and the mean curvature normal derived from the discrete Laplace-
Beltrami operator.

To each triangle i jk we assign the area vector

ai jk =
1
2
(vi−v j)× (v j−vk). (1)

The magnitude ‖ai jk‖ of this vector corresponds to triangle area
and its direction to the normal vector

ni jk = ai jk/‖ai jk‖. (2)

For discretizing the heat equation we need a discrete Laplace-
Beltrami operator. We suggest to use the cotan operator [PP93,
MDSB03], which we denote as B ∈ Rn×n and a lumped mass ma-
trix M ∈ Rn×n. Using this operator we define normal directions at
the vertices as the direction of the area gradient (or, equivalently,
the mean curvature)

n̂i =
(

B(v0,v1, . . .)
T
)

i
. (3)

This allows us to assign a unit normal direction as

ni =

{
n̂i/‖n̂i‖ n̂i 6= 0
∑i jk ai jk/‖∑i jk ai jk‖ else,

(4)

where we derive the vertex normal from the area vectors if the mean
curvature is zero.

4. Background

4.1. Distances from Diffusion

Crane et al. [CWW13] compute geodesic distances by employing
a result by Varadhan [Var67] stating that geodesic distance can be
computed as a point wise transformation of the heat kernel. The
heat kernel is the fundamental solution of the heat equation and
describes how much heat is distributed from a point p to a point q
on the surface in time t.

The heat kernel for a fixed point p and time t can be approxi-
mated on a surface mesh by solving a sparse linear system. For this
the heat equation is discretized using the discrete Laplace-Beltrami
operator B [CWW13]. Solving the linear system

(M− tB)hi = Ahi = ei (5)

where ei is the i−th unit vector, representing a singular heat source
at vertex i, yields values of the heat kernel for the fixed source point

Figure 2: Computing geodesic distance using heat diffusion. First
the heat kernel is evaluated at a vertex and the piecewise linear
gradient is computed (left). Integrating the normalized gradients
yields geodesic distances (right).

Figure 3: By exploiting sparsity in the Cholesky factor not all vari-
ables have to be determined in order to compute x2.

vi and time step t, see Figure 2 (left). Instead of using these values
directly the authors observe that accuracy can be significantly im-
proved by exploiting the fact that the gradient of the heat kernel
is parallel to the gradient of the distance function. The gradient of
the piecewise linear function defined by hi can be computed for
triangle k = (k1,k2,k3) as

gk
i =

1
2‖ak‖

3

∑
s=1

(hi)ks(nk× (vks+2 −vks+1)) (6)

where indices are interpreted modulo 3. Because the gradient of
the distance function has unit length everywhere, the correct and
desired gradient field is obtained by normalizing the gradient of the
heat values on each triangle

ĝk
i = gk

i /‖gk
i ‖. (7)

Integrating this gradient field by solving the Poisson equation

Bdi = D(ĝ0
i , ĝ

1
i , . . .)

T, (8)

where D is the discrete divergence operator, results in the distance
values di.

4.2. Localized linear solves

The cost for the computation of geodesic distances using heat diffu-
sion is dominated by the solution of two linear systems. Since both
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Figure 4: Illustration of the exponential map centered at p. Image
courtesy of Ryan Schmidt.

of them are sparse, symmetric and positive semi-definite the sys-
tems can be efficiently solved by constructing the sparse Cholesky
factorization A = LDLT [Dav11] where L is a sparse lower tri-
angular matrix and D a diagonal matrix. Given this factorization,
systems can be solved by forward- and back substitution

Ax = b

LDLTx = b
LDy = b Forward substitution

LTx = y Back substantiation

The main computational burden is the factorization step. Herholz et
al. [HDA17] introduced a method that allows to use a precomputed
factorization of a global linear system representing heat diffusion to
efficiently solve a linear system on a small surface patch. The key
idea is to systematically analyze the dependencies of the values
in y and x during forward- and back substitution. As it turns out
only a relatively small subset of values in the solution vector has to
be computed in order to yield exact values at vertices in a surface
patch.

Consider the linear system illustrated in Figure 3, where colored
squares stand for non-zeros. Solving for the vector x by back sub-
stitution is followed by determining the values xi in reverse order.
If we are only interested in a subset of the values, say {x2}, not
all values have to be computed. Because of the non-zero LT

2,3, the
value x3 has to be determined in order to evaluate x2. x3 in turn
depends on x6 and x7. The values x1,x4 and x5 do not have to be
computed at all. All necessary values can be determined very ef-
ficiently by traversing the so called elimination tree. Interestingly
also the substituted vector y is sparse for a sparse right-hand side
b. As a consequence exact values for a subset of all variables can
be computed in a runtime that largely depends on the number of
requested values. For details we refer the reader to [HDA17].

Both linear systems can be prefactored and reused to efficiently
solve for geodesic distances between an arbitrary vertex and all oth-
ers in a small local patch.

5. Algorithm

Given a center vertex vi we wish to compute the log map for a set of
vertices {v j} j∈I . Each vertex in this set is mapped to the geodesic
distance to vi and the the angle of the tangent vector defined by that

Figure 5: Left: Simulating heat diffusion starting at vertex v j we
obtain tangent vectors to geodesics passing through v j. Evaluating
these vectors at vi defines the angular component of the log map
centered at vi. Right: We show that in order to evaluate tangent
vectors at vi for all vertices in a region it is enough to solve only a
few diffusion problems close to the center of the map.

geodesic at vi with a fixed reference direction. We can use the meth-
ods laid out in the previous section to compute distances based on
solving prefactored sparse linear systems. The remaining problem
is to compute the angular part of the log map. Our first observation
is similar to Crane et al. [CWW13]: the tangents of geodesics are
parallel to the gradients of the solution of heat diffusion for short
times t.

An essential property of our solution is symmetry: the heat dif-
fused in time t from vertex i to vertex j is identical to the heat dif-
fused from j to i in the same time. This property is exactly captured
in the discrete setting – at least if the discrete Laplace operator ma-
trix L and mass matrix M are symmetric. Then the heat diffused
from i to j is (hi) j where h is the solution to Eq. 5. This is just the
i j entry of (M− tB)−1 = A−1. Since the matrix A is symmetric,
its inverse is also symmetric and we have (hi) j = (h j)i.

Computing the angle for one vertex To compute the tangent to
the geodesic connecting vertices i and j we diffuse heat starting at
vertex j and evaluate the gradient in vertex i. To this end we solve
Equation 5 with the right hand side e j. Based on the heat values h j
we can compute the heat gradient per triangle using Equation (6).
To define the gradient of h j at vertex i we use gradients gk

j in the
triangles adjacent to it. We represent the discrete tangent space at
vertex i by the vector space orthogonal to the (normalized) mean
curvature normal ni (4). Projecting the vertex star of i along ni re-
sults in a conformal flattening, meaning the relative angles incident
at vertex i are being preserved. Each gradient gk

j is projected onto
this discrete tangent space, as illustrated in Figure 6, leading to

ḡk
j = gk

j−ninT
i gk

j. (9)

The final direction is then computed by taking the area weighted
average of the projected gradients:

gi
j = ∑

k
Akḡk

j. (10)

The angle of this vector to a fixed reference direction in the discrete
tangent space represents the angular component of the log map and
forms, together with the distance information, geodesic polar coor-
dinates for vertex v j with respect to the center vi . Figure 5 (left)
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Figure 6: Evaluating the gradient of the heat kernel centered at v j
in all triangles adjacent to vi and averaging in the tangent plane
gives the angular component of the map.

illustrates the gradient vectors for many vertices, however, we are
only interested in the vector at the center vertex of the log map.

Computing directions for all vertices in the region Suppose we
want to evaluate the log map with respect to vi for all vertices in a
specific region. Using the technique described in the previous para-
graph would require solving the heat diffusion problem

(M− tB)h j = e j (11)

for each vertex v j in that region. To compute the gradient we are
actually only interested in a few elements of h j, namely those asso-
ciated with the vertex vi and its immediate neighbors N (i). While
solving for these few values is very efficient using the localization
technique described before, doing so for a large number of vertices
still leads to an overall inefficient approach.

Yet, we observe that symmetry allows us to reverse the roles of
source and destination. This means, instead of evaluating (h j)k for
every j and k ∈ N (i)∪ {i} we can evaluate (hk) j, giving us the
same values. This way we only need to perform d = |N (i)∪{i}|
forward- and back substitutions. We can easily compute these so-
lutions in parallel exploiting vectorization which allows us to tra-
verse the sparse matrix data structures only once during forward
and back-substitution. This means that we can compute d solutions
in time sub-linear in d in practice. Moreover, we need the values hi
anyway to compute geodesic distances.

Efficient computation Even though we are interested in the expo-
nential map only in a small neighborhood around the source ver-
tex the prefactored linear systems give values for all vertices of
the mesh. Therefore performance depends on the size of the full
mesh which is undesirable in most applications. A possible remedy
would be to extract a local neighborhood of the mesh and solve
the linear systems locally. This requires factoring two linear sys-
tems for each instance of the problem. Moreover, the result will
differ since the heat kernel using the full operator considers heat
diffusing over the complete mesh. Using a sufficiently large neigh-
borhood, however, would mitigate this effect close to the surface
vertex, see [HHA17] for a discussion of this approach.

Using the approach described by Herholz et al. [HDA17] offers
a way to sidestep the repeated factorization of the local problems
by reusing a global factorization. This technique computes the ex-
act same numerical values as traditional forward and back substi-

tutions. The runtime of this approach, however, depends only very
mildly on the size of the full mesh.

6. Implementation

The implementation of the proposed approach is straightforward
given an implementation of Cholesky factorization and local back
substitution. Input for the algorithm is the index of the source ver-
tex i and a set of vertex indizes I representing the neighborhood
for which the exponential map shall be computed. In a preprocess
Cholesky factorizations of the heat operator A and the mesh Lapla-
cian B have been computed for the full mesh. The algorithm pro-
ceeds as follows:

1. Locally solve the heat equation (5) for i and all vertices con-
nected to i using the precomputed Cholesky factor [HDA17] re-
sulting in vectors hk.

2. Compute geodesic distances using hi following Crane et
al. [CWW13], integration of the gradient field is again computed
by locally solving against a prefactored system.

3. For each vertex j∈I compute the gradient of the values (hk) j in
all triangles connected to i, project them onto the tangent plane
at i, build the area weighted average and compute the angle be-
tween the gradient and a fixed reference direction in the tangent
plane.

4. Optionally compute coordinates by converting the polar coordi-
nates to Cartesian ones.

7. Evaluation

We evaluated our algorithm on a set of meshes with different char-
acteristic features as well as standard geometries. It is well known
that the heat method can produce distorted results if the mesh is
not Delaunay [LXFH15]. We therefore restrict our analysis to De-
launay meshes where possible. For meshes that do not possess this
property a Laplacian based on the intrinsic Delaunay triangulation
has to be used [FSBS06, LXFH15].

We compare our algorithm to the Dijkstra based approaches
DEM and DGPC. For DEM we use our carefully optimized cus-
tom implementation including improvements regarding robustness
introduced in [Sch10]. We have empirically found that a Dijkstra
implementation based on Fibonacci heaps for dynamically updat-
ing the priority queue provides the best performance. For DGPC
we use publicly available code provided by the authors.

7.1. Performance

To evaluate performance we conducted two basic experiments.
First, we vary the patch size for different meshes and compute ex-
ponential maps using our method, DEM and DGPC (see Figure
7). Even though our algorithm exploits the sparse local evaluation
method there is still a dependency of runtime on the size of the full
mesh which is not the case for the alternative approaches. Across
meshes of different sizes we find that our method outperforms its
competitors when the patch covers at least 5% of the mesh’s ver-
tices.

In a second experiment (Figure 8) we keep the shape of the mesh
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Figure 7: Performance for exponential maps using our method
(heat), discrete exponential maps (DEM) [SGW06] and discrete
geodesic polar coordinates (DGPC) [MR12]. We compare timings
for fixed meshes and varying patch size (measured in fraction of
total vertices). Each measurement is averaged across 50 random
patches.

million vertices

t(m
s)

he
ig

ht

Figure 8: Keeping the patch size fixed at 25000 vertices we vary
the resolution of the full mesh. Left we see the performance of
the heat method (yellow) which can beat DEM (blue) and DGPC
(green) if the patch size is below 5% of the full mesh. Consequently
we see our method outperform its competitors for meshes with
fewer than 5× 105 vertices. The right figure illustrates the height
of the elimination tree for different mesh resolution, revealing the
influence of mesh geometry on performance.

and the patch size fixed and vary the tessellation density. The per-
formance of DEM and DGPC is unaffected because their runtime
only depends on a local traversal that is not influenced by the size
of the full mesh. As seen in the first experiment our algorithm is
only more efficient than the other two if the size of the exponential
map is more than 5% of the full mesh in terms of vertex count. We
see this result confirmed in the second experiment where we choose
a patch size of 2.5× 104 vertices and consequently see better per-
formance only for tessellations with fewer than 5×105 vertices.

That our approach is faster than simple traversal algorithms can
be explained by the fact that the factorization of the system matrices
is an effective precomputation step. This precomputation step may
also be considered the downside of our method. In order for the
factorization to be reasonably sparse and allow for fast local back
solves, the matrices have to be reordered using nested dissection
(see [HDA17]).

Elimination tree The runtime of our algorithm is dominated by
the computation of heat values by solving a sparse linear sys-
tem. We employ the sparse local solve method by Herholz et
al. [HDA17] which minimizes computation time by discarding val-
ues that do not have to be computed in order to evaluate heat val-
ues in a local region. The amount of values that can be discarded
is directly linked to the so called elimination tree (see [HDA17]
for details). If this tree is fairly balanced the performance of our
method benefits the most. It is therefore natural to ask how dif-
ferent geometries influence the tree and what the worst case for the
balancedness of this tree is. While we do not provide a formal proof
we argue that spherical objects are among the worst when it comes
to a balanced elimination tree. This statement is motivated by the
fact that the shape of the tree is influenced by a reordering of the
vertices e.g. using the nested dissection approach. An efficient re-
ordering in terms of a balanced elimination tree is obtained by the
following procedure:

1. find a small set of vertices (cut set) that divides the mesh graph
in two sub meshes of roughly the same size.

2. reenumerate the vertices starting with the first sub mesh fol-
lowed by the second and the vertices in the cut set.

3. recursively apply these steps on the sub meshes.

The elimination tree is balanced if both demands in 1. are fulfilled.
For spherical object it is not possible to find a very small dividing
set in order to split the mesh. This is in contrast to cylindrical shapes
which can be cut much more efficient, especially if the ratio of
radius and length is small.

In Figure 8 we indirectly measure balancedness by tree height
and illustrate its dependency on the tessellation density for different
shapes. As expected, the sphere yields the highest tree and therefore
the worst performance of our algorithm. The Pensatore model is
quite spherical and therefore close to the sphere in terms of tree
height. The cylinder with the larger length/radius ratio performs
best. Since we evaluated performance on different objects including
the sphere we believe that our performance results extend to a large
set of meshes.

7.2. Quality

The main goal of our algorithm is to generate smooth exponential
maps even close to the cut locus or areas of high curvature where
competing methods produce artifacts. However, we also evaluate
accuracy compared to analytic results, even though this is not our
main goal and might even contradict smoothness. We can show that
our method still produces quite accurate results for different stan-
dard geometries.

Smoothness We compare our algorithm to the approaches by
Schmidt et al. [SGW06] (DEM) and Malvær et al. [MR12] (DGPC)
in terms of smoothness of the exponential map. Figure 9 shows
some rather challenging cases of regions of high curvature that
might also include parts of the cut locus (e.g. second row, close
to the eyes). In all cases our algorithm produces smooth injective
maps whereas other methods exhibit fold over and discontinuities
in the map. These problems are usually more pronounced for DEM.
For regions of low curvature all results are very close (last row).
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Figure 9: Quality comparisons for our method (left), DEM (cen-
ter) and DGPC (right). Our method yields smoother results for re-
gions of high curvature. For smooth regions all methods perform
similar.

Our algorithm also performs well on very large meshes (Figure 11,
3.5M vertices) and does not only produce smooth maps but also
outperforms competing methods. In this example we also compare
to discrete conformal maps [DMA02] which might introduce se-
vere area distortion and is therefore not considered in the following
experiments.

Exponential maps computed using our method are smooth even
far away from the central vertex (see Figure 11). However, they
might exhibit distortions at elongated features, like the exact ex-
ponential map would. Unlike competing approaches our technique
does not produce noise for these regions.

Our method can not guarantee injectivity of the map. Figure 14
(left) shows an extreme case. Even though our algorithm does not
produce an injective map it is still smooth in contrast to other meth-
ods. Note, that even exact polyhedral geodesics as implemented by
Surazhsky et al. [SSK∗05] will introduce artifacts at the cut lo-
cus because the exponential map is not defined at these points. By
tweaking the time step parameter t in equation (5) we can also com-
pute injective maps for these extreme cases. A parameter of 102h2

produces an injective map that is considerable smoothed and there-
fore not as close to the ground truth exponential map. Choosing
smaller values for t yields exponential maps that are more accurate
but exhibit artifacts. The parameter is therefore useful in order to

Figure 10: Comparison of our method (top left), conformal map
(top right), DEM (lower left) and DGPC (lower right).

Figure 11: Our exponential maps extend smoothly across the
whole surface except for the cut locus.

tune the trade off between accuracy and smoothness. Unless noted
otherwise, we use the squared mean edge length h2 for this param-
eter, as suggested by Crane et al. [CWW13].

Both Dijkstra based algorithms propagate information along one
path and introduce error due to the inherent assumption that map-
pings between tangent spaces are isotropic, which is not true in gen-
eral. Moreover, this implies that in cases where geodesics are not
unique the algorithm decides arbitrarily on one specific path. Heat
diffusion, in contrast, can be interpreted as tracing a large num-
ber of particles moving randomly across the mesh [Law10]. Our
approach therefore propagates information along all possible paths
simultaneously and consequently yields smoother maps. For pla-
nar meshes the exponential maps by Schmidt et al. [SGW06] and
Malvær et al. [MR12] both produce exact results by construction.
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Accuracy To evaluate accuracy we compare results on three ana-
lytically defined geometries for which we can can explicitly com-
pute values of the exponential map. We do not expect our method
to outperform the other two in every case because these geometries
are very smooth and therefore represent cases where the inherent
assumptions of the Dijkstra based methods are very well fulfilled.

For the sphere we can easily determine the correct value at every
vertex. For the two dimensional Gauss function we use the fact that
it is rotationally symmetric and therefore directly gives the angular
part of the exponential map when using the maximum as origin.
The distance can be computed by numerical integration along a one
dimensional vertical slice of the object. The saddle mesh is defined
in terms of sine functions. By solving a differential equation with
appropriate boundary conditions we can trace geodesics across the
surface. For these geodesics the angle is constant and the distance
can be easily determined by measuring arc length. We numerically
solve the differential equations using Mathematica and achieve a
residual error below 10-6. We project points sampled from a set of
geodesics, starting at the map origin, onto the mesh and compare
values by linear interpolation across the mesh triangles.

To investigate the influence of mesh resolution we compare re-
sults for different mean edge lengths. For each method and mesh
we measure the error in the distance and angle component (Ed
and Ea, respectively) of the exponential map and report averaged
values in Table 1. Figure 15 shows error plots for the sphere and
Gauss meshes as well as the resulting map. For the saddle mesh
only the maps are shown because the reference solution is only de-
fined along a discrete set of geodesics.

Our method tends to yield better results if the tessellation is rela-
tively fine. While the average error is in most cases smaller for our
method compared to DEM, both in terms of distance and angle, the
DGPC still produces better results in many cases. In terms of visual
quality our result matches those of DGPC on the test meshes.

The influence of tessellation quality on accuracy is illustrated
in Figure 13. The first mesh is a very regular triangulation of the
plane and serves as reference solution. For the second mesh 50%
of the edges have been randomly flipped resulting in non-regular
and nearly degenerate triangles. This introduces artifacts in the ex-
ponential map but the overall quality is preserved, even at some
distance from the center. The errors in distance are 0.72×10-2 and
0.205× 10-2 in angle as compared to 0.91× 10-3 and 0.9× 10-3

respectively for the regular mesh. For an anisotropic mesh, gener-
ated by anisotropic scaling, we see significant distortion close to
the center, however, at some distance accuracy can be recovered.
The errors for distance and angle are 0.77× 10-2 and 0.23× 10-2.
Since these meshes are planar most method based on exact polyhe-
dral geodesics or Dijkstra based propagation will yield exact result.
Our algorithm is useful whenever performance and smoothness is
more important than robustness against very irregular meshes.

8. Conclusion

We presented an algorithm to generate smoothed exponential maps
on discrete surfaces. The method is based on discrete heat diffusion
and localized solutions of linear systems. The most important ob-
servation is that exploiting linear solvers that provide localization
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Figure 12: Exponential maps at a saddle point for meshes of dif-
ferent resolution.

Figure 13: Influence of mesh quality on accuracy. Our method per-
forms well also for irregular (center) and anisotropically scaled
meshes (right).

and using system factorization as a precomputation step, it is possi-
ble to improve computation speed over simple traversal algorithms.
As computing angles of the paths is similar to solving a transport
problem along the path this observation could be very useful in a
wide range of geometry processing algorithms.

While we believe the local parameterizations our approach pro-
vides are improving on earlier approaches also in terms of quality,
it would be great to provide some guarantees in terms of the qual-
ity of the mapping. Given the complexity of current algorithms that
provide such guarantees it may be doubtful that it is possible to
obtain mappings with guarantees at interactive rates. The option to
increase the diffusion time seems to be a good compromise in this
direction.
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Sphere Gauss Saddle
0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005

di
st

an
ce heat 0.612 ·10-3 0.211 ·10-2 0.174 ·10-2 0.593 ·10-3 0.584 ·10-3 0.142 ·10-2 0.324 ·10-3 0.928 ·10-3 0.173 ·10-2

DEM 0.125 ·10-2 0.148 ·10-2 0.912 ·10-3 0.453 ·10-2 0.364 ·10-2 0.863 ·10-2 0.287 ·10-3 0.963 ·10-3 0.197 ·10-2

DGPC 0.9 ·10-4 0.174 ·10-3 0.279 ·10-3 0.523 ·10-3 0.221 ·10-3 0.138 ·10-2 0.524 ·10-4 0.135 ·10-3 0.440 ·10-3

an
gl

e heat 0.186 ·10-3 0.255 ·10-3 0.107 ·10-2 0.212 ·10-3 0.629 ·10-3 0.461 ·10-2 0.384 ·10-2 0.848 ·10-2 0.187 ·10-1

DEM 0.325 ·10-3 0.538 ·10-3 0.138 ·10-3 0.129 ·10-2 0.168 ·10-2 0.829 ·10-2 0.323 ·10-1 0.376 ·10-1 0.402 ·10-1

DGPC 0.409 ·10-4 0.871 ·10-4 0.21 ·10-3 0.179 ·10-3 0.408 ·10-4 0.168 ·10-2 0.111 ·10-2 0.314 ·10-2 0.106 ·10-1

Table 1: Accuracy measurements for the experiments illustrated in Figures 15 and 12. Average errors in the angle and distance component
with respect to reference solutions are reported for different mesh resolutions.

ours (t = h2)

exact

DEM

DGPC

t = 102h2

t = 10h2

t = 10-1h2

t = 10-2h2

Figure 14: Exponential maps in a challenging case including parts of the cut locus. Left: Our method compared to exact polyhedral
geodesics, DEM and DGPC. Right: By varying the time step t of the diffusion problem the smoothness of the map can be influenced. As
default choice we use the squared mean edge length h2 as suggested by Crane et al. [CWW13]. For smaller time steps the exponential maps
become similar to the result using exact polyhedral geodesics but are smoother.
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Figure 15: Comparing our method, exact polyhedral geodesics, DGPC and discrete exponential maps on basic geometries. The map and
errors in angle (Ea) and distance (Ed) are visualized for different mesh resolutions.
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