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Exponential Maps



Previous Approaches

Exact polyhedral geodesics: Accurate but slow.

eg.: [Wang et al., 2017] [Qin et al. 2016] [Ying et al., 2013] 
       [Xin et al., 2009] [Surazhsky et al., 2005]
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• Compute per triangle gradient of heat values. 

• Observation: Gradient directions match those 
of geodesic distance quite exactly. 

• Idea: Normalize and invert gradients, then 
integrate their divergence (solve a Poisson 
problem). 
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Angles in Heat
Solve for every vertex   :

Compute gradient of every     at center vertex   .

Observation 1:      is the   -th column of        .  

Observation 2:  To evaluate the gradient at vertex  , we only need a few 
              rows of     .  



Angles in Heat

-th row.



Angles in Heat

-th row.

Idea:      is symmetric              is symmetric.



Angles in Heat

-th row =    .

Idea:      is symmetric              is symmetric.



Angles in Heat

-th row =    .

Idea:      is symmetric              is symmetric.
We need to evaluate heat diffusion only for a few vertices (≈ 7) instead of all!



Angles in Heat

-th row =    .

Idea:      is symmetric              is symmetric.
We need to evaluate heat diffusion only for a few vertices (≈ 7) instead of all!



Angles in Heat
We need to evaluate heat diffusion only for a few vertices (≈ 7) instead of all!



Angles in Heat
We need to evaluate heat diffusion only for a few vertices (≈ 7) instead of all!

We get information for all vertices but usually only need a local exponential map.



Localization
We need to evaluate heat diffusion only for a few vertices (≈ 7) instead of all!

We get information for all vertices but usually only need a local exponential map.



Cholesky factorization



Cholesky factorization



Cholesky factorization



Cholesky factorization



Cholesky factorization
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Cholesky factorization

is sparse because     is.

We are interested in only a 
few values of     . 
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Localization

Compute                and finally     . All other variables and rows remain unvisited.



Localization: Performance
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Performance comparison
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Quality comparison

ours exact polyhedral geodesics [Schmidt et al., 2006] [Melvær et al., 2012]



Smooth maps

t = 102h2 t = 10h2 t = h2 t = 10−1h2 t = 10−2h2

h : average edge length



Mesh quality

regular mesh irregular ansiotropic

Using the intrinsic Delaunay Triangulation we can 
handle mesh degeneracies to a certain extend.



Global parameterization

Away from the cut locus the maps extend smoothly across the surface.



Summary

• We can extend diffusion based distance computation to also compute angles. 

• The algorithm uses the same data structures as Geodesics in Heat. 

• The method yields smoother maps then Dijkstra based approaches while not 
being slower for medium sized patches.
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Thank you for your attention!
Contact: philipp.herholz@inf.ethz.ch  


